Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Struct Biotechnol J ; 24: 225-236, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38572166

ABSTRACT

Breast cancer is one of the most spread and monitored pathologies in high-income countries. After breast biopsy, histological tissue is stored in paraffin, sectioned and mounted. Conventional inspection of tissue slides under benchtop light microscopes involves paraffin removal and staining, typically with H&E. Then, expert pathologists are called to judge the stained slides. However, paraffin removal and staining are operator-dependent, time and resources consuming processes that can generate ambiguities due to non-uniform staining. Here we propose a novel method that can work directly on paraffined stain-free slides. We use Fourier Ptychography as a quantitative phase-contrast microscopy method, which allows accessing a very wide field of view (i.e., mm2) in one single image while guaranteeing high lateral resolution (i.e., 0.5 µm). This imaging method is multi-scale, since it enables looking at the big picture, i.e. the complex tissue structure and connections, with the possibility to zoom-in up to the single-cell level. To handle this informative image content, we introduce elements of fractal geometry as multi-scale analysis method. We show the effectiveness of fractal features in describing and classifying fibroadenoma and breast cancer tissue slides from ten patients with very high accuracy. We reach 94.0 ± 4.2% test accuracy in classifying single images. Above all, we show that combining the decisions of the single images, each patient's slide can be classified with no error. Besides, fractal geometry returns a guide map to help pathologist to judge the different tissue portions based on the likelihood these can be associated to a breast cancer or fibroadenoma biomarker. The proposed automatic method could significantly simplify the steps of tissue analysis and make it independent from the sample preparation, the skills of the lab operator and the pathologist.

2.
Appl Opt ; 62(10): D104-D118, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37132775

ABSTRACT

Microplastic (MP) pollution is seriously threatening the environmental health of the world, which has accelerated the development of new identification and characterization methods. Digital holography (DH) is one of the emerging tools to detect MPs in a high-throughput flow. Here, we review advances in MP screening by DH. We examine the problem from both the hardware and software viewpoints. Automatic analysis based on smart DH processing is reported by highlighting the role played by artificial intelligence for classification and regression tasks. In this framework, the continuous development and availability in recent years of field-portable holographic flow cytometers for water monitoring also is discussed.

3.
Front Physiol ; 14: 1120099, 2023.
Article in English | MEDLINE | ID: mdl-36860516

ABSTRACT

Kidney microscopy is a mainstay in studying the morphological structure, physiology and pathology of kidney tissues, as histology provides important results for a reliable diagnosis. A microscopy modality providing at same time high-resolution images and a wide field of view could be very useful for analyzing the whole architecture and the functioning of the renal tissue. Recently, Fourier Ptychography (FP) has been proofed to yield images of biology samples such as tissues and in vitro cells while providing high resolution and large field of view, thus making it a unique and attractive opportunity for histopathology. Moreover, FP offers tissue imaging with high contrast assuring visualization of small desirable features, although with a stain-free mode that avoids any chemical process in histopathology. Here we report an experimental measuring campaign for creating the first comprehensive and extensive collection of images of kidney tissues captured by this FP microscope. We show that FP microscopy unlocks a new opportunity for the physicians to observe and judge renal tissue slides through the novel FP quantitative phase-contrast microscopy. Phase-contrast images of kidney tissue are analyzed by comparing them with the corresponding renal images taken under a conventional bright-field microscope both for stained and unstained tissue samples of different thicknesses. In depth discussion on the advantages and limitations of this new stain-free microscopy modality is reported, showing its usefulness over the classical light microscopy and opening a potential route for using FP in clinical practice for histopathology of kidney.

4.
Dose Response ; 20(1): 15593258221082896, 2022.
Article in English | MEDLINE | ID: mdl-35422680

ABSTRACT

A reliable diagnosis and accurate monitoring are pivotal steps for treatment and prevention of COVID-19. Chest computed tomography (CT) has been considered a crucial diagnostic imaging technique for the injury assessment of the viral pneumonia. Furthermore, the automatization of the segmentation methods for lung alterations helps to speed up the diagnosis and lighten radiologists' workload. Considering the assiduous pathology monitoring, ultra-low dose (ULD) chest CT protocols have been implemented to drastically reduce the radiation burden. Unfortunately, the available AI technologies have not been trained on ULD-CT data and validated and their applicability deserves careful evaluation. Therefore, this work aims to compare the results of available AI tools (BCUnet, CORADS AI, NVIDIA CLARA Train SDK and CT Pneumonia Analysis) on a dataset of 73 CT examinations acquired both with conventional dose (CD) and ULD protocols. COVID-19 volume percentage, resulting from each tool, was statistically compared. This study demonstrated high comparability of the results on CD-CT and ULD-CT data among the four AI tools, with high correlation between the results obtained on both protocols (R > .68, P < .001, for all AI tools).

5.
Sci Total Environ ; 815: 152708, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-34990679

ABSTRACT

Micron size fiber fragments (MFFs), both natural and synthetic, are ubiquitous in our life, especially in textile clothes, being necessary in modern society. In the Earth's aquatic ecosystem, microplastic fibers account for ~91% of microplastic pollution, thus deserving notable attention as one of the most alarming ecological problems. Accurate automatic identification of MFFs discharges in specific upstream locations is highly demanded. Computational microscopy based on Digital Holography (DH) and machine learning has been demonstrated to identify microplastics in respect to microalgae. However, DH is a non-specific optical tool, meaning it cannot distinguish different types of plastic materials. On the other hand, materials-specific assessments are pivotal to establish the environmental impact of different textile products and production processes. Spectroscopic assays can be employed to identify microplastics for their intrinsic specificity, although they are generally low-throughput and require large concentrations to enable effective measurements. Conversely, MFFs are usually finely dispersed within a water sample. Here we rely on a polarization-resolved holographic flow cytometer in a Lab-on-Chip (LoC) platform for analysing MFFs. We demonstrate that two important objectives can be achieved, i.e. adding material specificity through polarization analysis while operating in a microfluidic stream modality. Through a machine learning numerical pipeline, natural fibers (i.e. cotton and wool) can be clearly separated from synthetic microfilaments, namely PA6, PA6.6, PET, PP. Moreover, the proposed system can accurately distinguish between different polymers under investigation, thus fulfilling the specificity goal. We extract and select different features from amplitude, phase and birefringence maps retrieved from the digital holograms. These are shown to typify MFFs without the need for sample pre-treatment or large concentrations. The simplicity of the DH method for identifying MFFs in LoC-based flow cytometers could promote the use of polarization resolved field-portable analysis systems suitable for studying pollution caused by washing processes of synthetic textiles.


Subject(s)
Holography , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Microplastics , Plastics , Wastewater , Water Pollutants, Chemical/analysis
6.
Magn Reson Imaging ; 75: 51-59, 2021 01.
Article in English | MEDLINE | ID: mdl-33080334

ABSTRACT

PURPOSE: The purpose of this study is to assess Blood oxygenation level dependent Magnetic Resonance Imaging (BOLD-MRI) and Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) in the differentiation of benign and malignant breast lesions. METHODS: Fifty-nine breast lesions (26 benign and 33 malignant lesions) pathologically proven in 59 patients were included in this retrospective study. As BOLD parameters were estimated basal signal S0 and the relaxation rate R2*, diffusion and perfusion parameters were derived by DWI (pseudo-diffusion coefficient (Dp), perfusion fraction (fp) and tissue diffusivity (Dt)). Wilcoxon-Mann-Whitney U test and Receiver operating characteristic (ROC) analyses were calculated and area under ROC curve (AUC) was obtained. Moreover, pattern recognition approaches (linear discrimination analysis (LDA), support vector machine, k-nearest neighbours, decision tree) with least absolute shrinkage and selection operator (LASSO) method and leave one out cross validation approach were considered. RESULTS: A significant discrimination was obtained by the standard deviation value of S0, as BOLD parameter, that reached an AUC of 0.76 with a sensitivity of 65%, a specificity of 85% and an accuracy of 76%. No significant discrimination was obtained considering diffusion and perfusion parameters. Considering LASSO results, the features to use as predictors were all extracted parameters except that the mean value of R2* and the best result was obtained by a LDA that obtained an AUC = 0.83, with a sensitivity of 88%, a specificity of 77% and an accuracy of 83%. CONCLUSIONS: Good performance to discriminate benign and malignant lesions could be obtained using BOLD and DWI derived parameters with a LDA classification approach. However, these findings should be proven on larger and several dataset with different MR scanners.


Subject(s)
Breast Neoplasms/blood , Breast Neoplasms/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Oxygen/blood , Adult , Aged , Breast Neoplasms/pathology , Diagnosis, Differential , Diffusion , Female , Humans , Middle Aged , ROC Curve , Retrospective Studies , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL
...